MonPoly/MFOTL

Seminar Advanced Software Engineering FS22
Simon Furrer

Seminars topic

e How does specification and checking work with MonPoly/MFOTL?

e For anadded point: which formulas are monitorable and which are not?

TOC

e Motivation

e MonPoly

e Artifact building

e Demo

e Missing feature

e Monitorable formulas

e Q&A

Motivation

e Thereis aJava application, which reads from smart meters, communicates with car
chargers/heat pumps/batteries/boilers/washing machines/... and optimizes the own
consumption of buildings having photovoltaics installed.

e Automatically analyze log files of that application for known problems -> trace checking
e Linkdetected problems with known fixes for those problems

e Thisreduces costs and increases the quality of doing operations

MonPoly

e It'sNOT about

e |[t'sabout...

MonPoly

e MonPoly is a prototype monitoring tool
e Developed as part of an academic project at ETH Zurich

e Checkthe compliance of log files with respect to policies that are specified by formulasin
MFOTL

MonPoly: specification

e Signatures (.sig)
e Policy Specification Language (.mfotl)

e Logentries(.log)

\ MonPoly: signatures

signature) ::= (predicate) (signature) | (empty)
predicate) ::= (string) ‘¢ (sorts) ‘)’

¢

sort-list) ::= (sort) *,’ (sort-list) | (sort) | (empty)

(
(
(
(

sort) ::= ‘string’ | ‘int’ | ‘float’

e Example: loglevel(a:string)

MonPoly: policy specification language

(formula) :=

C (formula))’
‘FALSE’
‘TRUE’
(predicate)
(term) ‘=" (term)

(term) ‘<’ (term)

(term) >’ (term)

(term) ‘<=" (term)

(term) >=" (term)

(formula) ‘EQUIV’ (formula)

(formula) ‘IMPLIES’ (formula)

(formula) ‘OR’ (formula)

(formula) ‘AND’ (formula)

‘NOT’ (formula)

‘EXISTS’ (var-list) ‘.” (formula)

‘FORALL’ (var-list) *." (formula)

(var) ‘<=’ (aggreg) (v r) 3 (var-list) (formula)
(var) ‘<=’ (aggreg) (var) (formula)

‘NEXT’ (interval-opt) (formula)

‘PREV’ (interval-opt) (formula)
‘EVENTUALLY’ (interval-opt) (formula)
‘ONCE’ (interval-opt) (formula)
‘ALWAYS’ (interval-opt) (formula)
‘PAST ALWAYS’ (interval-opt) (formula)
(formula) ‘SINCE’ (interval-opt) (formula)
(formula) ‘UNTIL’ (interval-opt) (formula)

// aggregation formula
// variant with no group-by variables

(aggreg) =
‘CNT’
MIN’

| // counting aggregation operator
\

‘ ‘MAX’

\

\

\

// minimum aggregation operator
// maximum aggregation operator
// sum aggregation operator
// average aggregation operator
// median aggregation operator
= (lbound) *,” (rbound) | (empty)
‘¢ (bound) | ‘[’ (bound)
rbound) ::= (bound) ‘)’ | (bound) 1’| ‘*)’
bound) ::= (integer)(unit) | (integer)
— ‘S‘ ‘ (mi | &h? ‘ (d?

‘UM
‘AVG’
‘MED’

interval-opt) ::

lbound) ::=

unat)

)

term-list) (term) ¢, (term-list) | (term) | (empty)

(3R]

var-list) : var) ‘,’ (var-list) | (var) | (empty)

‘¢ (term) 0’

(term) ‘+ (term)

()

(' (term)

(term) ¢/ (term)

(term ‘MOD’ (term)
> (term)

£2i” ¢’ (term))’

442 ¢C (term) ¢)’

(est)

(var)

// modulo operation

// float to integer conversion
// integer to float conversion

integer) | (rational) | <" (string) ‘"’

u= ‘| (string)

MonPoly: policy specification language

(predicate) ::=
| (string) ‘C (term-list))’
| ‘tp’ ‘C (term))’ // time point predicate
| *a* ¢ {term): ©)? // timestamp predicate
| ‘“cpte’ ‘C {term) ¢, {term) *)! // time point and timestamp predicate

MoNPoLY terminal associativity

of
L
right
ef

@ O © W] | PREV NEXT ONCE EVENTUKLLY PAST ALWAYS ALWAYS | none

e Example: publish(r) IMPLIES ONCE[0,7d] approve(r)
“if areport is published then the report must have been approved within the last 7 days”

\ MonPoly: log entries

e Alogfileisasequence of log entries

(log-entry) ::= ‘@ (ts) (db)
(ts) ::= (integer) | (float)

(db) ::= (table) (db)
(table) ::
(
(
(

= (string) (relation)

relation) ::= (tuple) (relation) | (empty)

tuple) = ‘C (fields) ‘)’

fields) ::= (string) *,’ (fields) | (string) | (empty)

e Example: @1648716381.85 loglevel("DEBUG") message("hello world!")

Artifact building: architecture

signature file (.sig) ‘

We have problem x,
apply fix y!

logFile.log logstash logFile-transformed.log MonPoly
(docker container) P l (docker container) |

known | iteratn.relyj

problems as
.mfotl files

volume

Artifact building: logstash

input {
file {
path => "/app/logFile.2022-03-31.6.1lo0g" #
start_position => "beginning"
make sure logFile.log is processed every time logstash is started
sincedb_path => "/dev/null"

}
Iy
filter {
grok {
match => { "message" => "\[%{TIMESTAMP_IS08601:timestamp}\] \[%{LOGLEVEL:logLevel}\] \[%{GREEDYDATA:class}\] \[%{GRE
+
ruby {
path => "/app/transform_event.rb"
script_params => {}
b
¥
output {
TODO: fix out of order events
exec {
command => "echo '%{timestamp} loglevel(%{logLevel}) class(%{class}) actor(%{actor}) message(%{msg})' >> /app/logFil
Iy

Artifact building: lexer satisfaction

e We have to contain a newline at the end of the log
e TIMESTAMP_ISO8601 needs to be a unix timestamp, prepended with @ and optional millis

e We're not allowed to contain the following characters in the log:
o @

O O O O O O

(space)

Artifact building: lexer satisfaction

def filter(event)
timestamp = event.get('timestamp')
if timestamp.nil?
if the event contains no timestamp, ignore it
return []
end
time = DateTime.parse(timestamp)
unix_seconds = time.strftime('%s')
round the milliseconds to two decimal places since monpoly only deals with 2 significant places
timestamp_rounded_millis = timestamp.split(",").last.to_f.fdiv(16).round

event.set('timestamp', "@" + unix_seconds + "." + timestamp_rounded_millis.to_s)

for all other fields, we don't know whether the field actually is present, thus use "" if not present
event.set('logLevel', "\"" + (event.get('logLevel') || "").trC'"@.,={} ', '') + "\"")
event.set('class', "\"" + (event.get('class') || "").teC'"@.,={} ', '') + "\"")

event.set('actor', "\"" + (event.get('actor') || "").tr('"@.,={} ', "') + "\"")

event.set('msg', "\"" + (event.get('msg*') || "*).tcC'"@.,={} ', '') + "\"")

[event]

end

Missing feature

e MonPoly doesn’t implement pattern matching for strings (e.g. regex)
e However, thisis a crucial feature for the desired analyzer tool

e Solcontacted Prof. Basin...

Missing feature

e and |l got an answer from Srdjan, postdoc in prof. Basin's group:

e Inthe original version of Monpoly, pattern matching on strings is indeed not supported. However, we
have added that feature in the development version of Monpoly available here

e Namely, there are two additional "atomic" formulas:
o terml SUBSTRING term?2 ,where bothterms evaluate to strings
o terml MATCHES term2,whereterml evaluates to stringand term2 to an OCAML regular
expression

e Soyou could write the desired formula as:
o message (x) AND x MATCHES r".*some text.*"
¢} message (x) AND "some text" SUBSTRING x

https://bitbucket.org/jshs/monpoly/src/master/

MonPoly: monitorable formulas

e Subformulas of the form NOT psi should contain no free variables
e.g.NOT loglevel (x)is not monitorable

e What about unbounded future temporal operators? e.g. ALWAYS loglevel ("INFO”)
e Not monitorable -> restrict: ALWAYS [0, 3h] loglevel (“INFO”)

e MonPoly adds a last time point (largest representable timestamp) at the end of the input
event sequence, to evaluate subformulas at all time points in the original event sequence

References

e Overview of MonPoly, including its usage and history (paper)
e MonPoly source code (bitbucket), dev source code(bitbucket)
e ETHresearch project “Runtime Policy Monitoring and Enforcement” (link)

https://sourceforge.net/projects/monpoly/files/monpoly.pdf/download
https://bitbucket.org/monpoly/monpoly/src/master/
https://bitbucket.org/jshs/monpoly/src/master/
https://infsec.ethz.ch/research/projects/mon_enf.html

Q&A

feeling("satisfied")
IMPLIES ONCE [0, 20m]
thought ("I like the presentation") AND learned("new things")

