Seminar Software Engineering

1'9: Monitoring Spatially-Distributed Systems with Spatio-lemporal lL.ogics

Albin Aliu, 3. Juni 2022

Outline

1. Runtime Verification in a nutshell
1. Classification
a. Signal lTemporal Logic (STL)
b. Spatio-Signal lemporal Logic (SSTL)
c. Spatio-lemporal Reach and Escape Logic (STREL)

1. Hands-On Lab: R1Lola Specification Language

Runtime Verification in a nutshelllll

* 1nstead of proving that our system 1s correct, we're going to monifor it and
check whether 1t vwlates our specifications

* from the specification we synthesize monitors, which observe data,
that 1s extracted from the system by means of wstrumentation

* monitors can either be online or offline, meaning they can analyze and
monitor data while the system 1s running or they analyze the data after
the system’s execution

* Advantages: very precise information on the runtime behaviour ot the
monitored system, lightweight
Disadvantages: limited execution coverage

(1] Bartocci, E., Falcone, Y., Francalanza, A., Reger, G. (2018). Introduction to Runtime Verification. In: Bartocci, E., Falcone, Y. (eds) Lectures on Runtime Verification.

Lecture Notes in CGomputer Science, vol 10457. Springer, Cham. https://doi.org/10.1007/978-3-319-75632-5_1

property

monitor

verdict

observe

feedback

Instrumentation

system

src: https://en.wikipedia.org/wiki/

File:Runtime Verification Monitor.svg,

07.05.2022

https://en.wikipedia.org/wiki/File:Runtime_Verification_Monitor.svg
https://en.wikipedia.org/wiki/File:Runtime_Verification_Monitor.svg

Classification: Preliminariesl!i]

* 'lemporal Logic emerged from the need to specity propositions that depend on some fiming assumptions, hence the
name

* Linear lemporal Logic introduces
* the next operator o ¢, meaning ¢ 1s true at the next point of the trace (other notation: X¢)
 the until operator ¢, U ¢,, meaning ¢, 1s true from the current point ot the trace until ¢, 1s true.

* From these two operators, one can derive two more commonly used operators™

 the always operator defined as [[] ¢ = ¢ % talse (other notation: Geg for globally)

* the eventually operator defined as ¢ ¢ = =[] ¢ (other notation: F¢ for finally)

Signal Temporal Logic (STL)]

Introduction

» Usually, the data you pass to the monitor (figure slide 4) 1s an execution trace ot a system,
thus 1t’s a discrete sequence of events

* Signal lemporal Logic introduces signals, where “a signal 1s a function from a set of real
time points to a value domain™ [11.p- 9

* 'To work with signals, we add a new predicate
 u=fxltl,...,x,[t]) >0
* for some function f: R" - R

e andx;: R,;— R, 1 <i<misasignal and x[z] 1s the value of the signal x; at time .

Signal Temporal Logic (STL)[1]

The signal is never above 3.5
¢ =G (z[t] < 3.5)

HEEEEEEEEEEEEEE

Lecture Slides: On Signal Temporal Logic by Alexandre Donzé
University of California, Berkeley
February 3, 2014

Signal Temporal Logic (STL)[1]

Always |x| >0.5 = after 1 s, |x| settles under 0.5 for 1.5 s
Q= G(SB[t > .0 — F[O,.6] (G[0’1.5] Qf[t] < 05))

AN

0.5 0.5 0.5

k
<I§s 1.5 s <l|s 1.5s <ls 15s

Lecture Slides: On Signal Temporal Logic by Alexandre Donzé
University of California, Berkeley
February 3, 2014

Spatio-Signal Temporal Logic (SSTL)
Introduction
* Lbixtends STL with notions of somewhere and surround to express spatial properties

* 1nterpreted over a discrete model of the space, represented as a finite undvrected graph

* each node represents a location n the space, characterized by a set of signals that can
be observed 1n time

* cach edge 1s weighted and represents the distance between two nodes

Spatio-Signal Temporal Logic (SSTL)

Syntax

¢ = true|pu[=ywlys Ayl yv Uy | ©py vy W WL S V2

* Where the STL operators are the atomic proposition p,
the standard boolean connectives A (as conjunction) and = (as negation)
the bounded until operator % ;, for J C R

Renunder: y, % ; v, means y, must hold until y, holds and this should happen within t € J time’

Remark: All other common connectives and operators are derwed by de Morgan’s duality

10

Spatio-Signal Temporal Logic (SSTL)

Somewhere

* Oy, ¥ 18 the bounded somewhere operator

» ‘w must hold 1n a location reachable from the current
one with a total cost greater than or equal to w; and
less than or equal to wy’

* In which locations does ©®y, 5,y hold?

11

Spatio-Signal Temporal Logic (SSTL)

Surround

* Yy Sy Vo 18 the bounded surround operator

» ‘the above formula 1s true 1in a location / when [
belongs to a subset of locations A, a region,
satistying v, such that its external boundary
B™(A) (i.e., all the nearest neighbours (not in A)
of locations 1n A) contains only locations
satisfying y, and these locations in B¥(A) must be
reached from [/ by a shortest path of cost between
w; and w,’

» Let’s draw a graph mn which y; &3¢, y, holds

12

Spatio-Temporal Reach and Escape Logic (STREL)

¢ = true | p|~yly Ay Uy v |-y R un | &y,
e f1s a distance function

e c.g.1n a graph this could be ‘hops’, 1.e. going from one node to one ot 1ts neighbours
1s 1 hop

Remark: All other common connectwes and operators are derwed by de Morgan's duality

13

o 9?1; y, 1s the reachability operator

» ‘reaching a location satistying property y, passing only through locations that satisty
y,, through nodes whose distance form the mitial location satisty the predicate d’

9 14
D/

11

hops
end_dev ﬂmsl router.

14

. %{l w15 the escape operator

p ‘the possibility of escaping from a certain region passing only through locations that
satisty y, via a route with distance satistying the predicate d’
9 14
.

%

11

Shops —-end dev

m>2

15

STREL Examples

16

%

11

LR
+<‘):: B

N =1Y| éi&_\ Ct

Figure 3: Example of spatial properties. Reachability:

end dev ﬂziogf router. Escape: anogg —-end dev. Somewhere:
hops hops

& <4coord. Everywhere: B . router. Surround: (coord V

router) @;};Og; end_dev.

16

Temporal Logics vs Programming LLanguages

Stream

Temporal Specification Programming

Logics Languages Languages

Formal Guarantees Rich Verdicts

Faymonwville, P. et al. (2019). StreamLAB: Stream-based Monitoring of Cyber-Physical Systems. In: Dillig, I., Tasiran, S. (eds) Computer Aided Verification. CAV 2019. Lecture Notes in Computer Science(), vol 11561. Springer, Cham.
https://doi.org/10.1007/978-3-030-25540-4_24

17

Meet RTLola

RTLola
Specification

RTLola Toolkit

RTLola IR l : FPGA
I VHDL-Compiler

Synthesis Tool

https://www.react.uni-saarland.de/tools/rtlola/, June 3, 2022

RTLola
Interpreter

FPGA
Monitor

18

https://www.react.uni-saarland.de/tools/rtlola/

Why RTLola?

* Very powertul programming possibilities, allow for rule and state based monitors

* Asseen, Rl Lola provides an online monitor

* We can easily emulate S'TL

* Also, we're in 2022, 1.e. lo'L] 5G, GPS, everything 1s super equipped and super fast..

» Thus, just use the GPS sensor as a “stream” and act accordingly, implementation 1s easy
because we can program, instead of writing complicated formulae.

* RT'Lola monitors are guaranteed to never run out of memory, because the memory
consumption 1s determined statically

* lIdea: With a fast enough pipeline, 1t could be even used for distributed algorithms!

19

RTLola

Nice!

https://www.react.uni-saarland.de/tools/rtlola/

https://www.react.uni-saarland.de/tools/rtlola/

Until Operator in RTLola

output unitlphilphi2(t: Time) : Bool @ (t+b)]| any
close: time == | 'untilphilphi2(t)

if time <= t+a
then
phil<time>.hold() & unitlphilphi2[a,b](t).offset (1)
else
if time < t+Db
then
phil(time) .hold () &
(phi2(time) .hold () |
unitlphilphi2[a,b](t).offset (1))
else
phil(time) .hold() & phi2(time) .hold ()

trigger unitlphilphi2[a,b] (0)

21

Conclusions

* T'here are many different temporal logics. However, to specity correct formulae 1s a

dithicult task

* “Reading and writing property specifications 1s not easy for non-experts. Even
experts often stare for minutes at relatively small temporal logic formulae
(particularly when they have nested "until" operators).”

— Wikipedia on Runtime Verification

* Runtime verification and specification languages like R11.ola make this a lot easier, as
they allow for programming

22

References

* (Given by the teacher

« |P1] E. Bartocci, L. Bortolussi, M. Loreti, and L. Nenzi, “Monitoring mobile and
spatially distributed cyber-physical systems,” in Proceedings of the 15th ACM-IEEE
International Conference on Formal Methods and Models for System Design.

ACM, 2017, pp. 146—-155.

« |P2] H. Tortah, “Stream-based monitors for real-time properties,” in Intl. Conf. on

Runtime Verification. Springer, 2019, pp. 91-110.

» |P3] Ezi1o Bartocci, Liuca Bortolussi, LLaura Nenzi, Simone Silvetti: MoonlLight: A
Lightweight "Tool for Monitoring Spatio-Temporal Properties.

23

Demo

* Head over to https://www.react.uni-saarland.de/tools/rtlola/

* Download the binaries for your OS

* cd into the directory

* write a specification file, e.g. (as seen 1n my snake demo):

input xcord: Float64
output hitting_left_wall := xcord < 100.0
trigger hitting_left_wall

"NEAR LEFT WALL"

* Modity your program to write into stdout 1n a GSV format

» don’t forget to also print the header, e.g. “xcord, ycord, time” at the beginning ot your stream and don’t forget the new line \n after
every row

* pipe the output into the R1'Lola interpreter as follows, e.g. with the snake example:
python snake.py | ./streamlab monitor snake.lola --online --stdin --stdout

» Here, snake. lola 1s the specification file

* You can find more examples and details here: https://www.react.uni-saarland.de/tools/rtlola/tutorial. html
The example (drone) data can be downloaded here: https://www.react.uni-saarland.de/tools/rtlola/examples/tutorial.zip

* Enjoy!

24

https://www.react.uni-saarland.de/tools/rtlola/
https://www.react.uni-saarland.de/tools/rtlola/tutorial.html
https://www.react.uni-saarland.de/tools/rtlola/examples/tutorial.zip

