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ABSTRACT
Analysis of data is the foundation of multiple scientific disciplines,
manifesting in complex and diverse scientific data analysis work-
flows often involving exploratory analyses. Such analyses represent
a particular case for traditional data engineering workflows, as re-
sults may be hard to interpret and judge whether they are correct
or not, and where experimentation is a central theme. Oftentimes,
there are certain aspects of a result which are suspicious and which
should be further investigated to increase the trustworthiness of the
workflow’s outcome. To this end, we advocate a semi-automated
approach to reducing a workflow’s input data while preserving a
specified outcome of interest, facilitating irregularity localization
by narrowing down the search space for spotting corrupted input
data or wrong assumptions made about it. We outline our vision
on building engineering support for outcome-preserving input re-
duction within data analysis workflows, and report on preliminary
results obtained from applying an early research prototype on a
computational notebook taken from an online community of data
scientists and machine learning practitioners.
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1 INTRODUCTION
Essentially all scientific disciplines are generating an ever-increasing
amount of data [12]. To derive scientific discoveries, these data sets
are analyzed by complex data analysis workflows, employed to
analyze, manipulate and investigate data sets in order to apply
statistical techniques, spot anomalies, test hypotheses, or check
assumptions [20]. Technically, data analysis workflows are series of
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Figure 1: Motivating example: Results from a data analysis
workflow over a dataset comprising shark attacks worldwide
in the last 100 years.

discrete analysis programs arranged in (often non-linear) pipelines
that include facilities to perform data integration, normalization,
and filtering, often involving cloud workloads [28]. However, data
analysis workflows not only deal with chaining different tools that
implement these functionalities, but are a central instrument within
the scientific discovery process, which often involves exploratory
analysis and experimentation.

The trustworthiness of the results of data analysis workflows
is critical since, eventually, computational scientists rely on their
outcomes for building and validating theories [26]. In the worst
case, validity may be jeopardized if the data analysis produces incor-
rect results [22]. However, exploratory data analyses in scientific
computing often yield experimental results which are difficult to in-
terpret and for which it is hard to judge whether they are correct or
not [7, 32], which distinguishes them from traditional data engineer-
ing pipelines and other kinds of software. Exploratory data analysis
in practice is exacerbated further when data sets involved have big
data characteristics – when they are large (volume), heterogeneous
(variety), change over time (velocity), or are of questionable and
varying quality (veracity) [34].

Consider a data analysis workflow over a dataset comprising
shark attacks worldwide in the last 100 years, taken from Kaggle1.
Here, the analysis task is to figure out the number of shark attacks
reported per time of the day, and the workflow solving this task
is implemented as a computational notebook. Figure 1 shows a
plot of the aggregated attacks over certain timeslots. Notably, for
07h00 the number of attacks appears to be quite high in contrast to
other times of frequent attacks which are usually around noon and

1kaggle.com/mysarahmadbhat/shark-attacks
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afternoon. It may certainly be the case that the data indeed show a
high amount of attacks for that time; however, there may also be an
error in the analysis performed to produce this result, or the data
may be corrupted. More generally, assumptions made about the
input data may be incorrect and need to be refined [9]. Either way,
there are certain aspects of the results which are suspicious and
which should be further investigated to increase the trustworthiness
of the workflow’s outcome.

In software engineering, the investigation of suspicious program
behavior is generally referred to as debugging, which has been
tackled from many viewpoints for decades. Most often, assisting
techniques such as automated fault localization [1, 38] assume that
suspicious program behavior manifests in an error in the program’s
source code that can be identified by an oracle in the form of a test.
The existence of a test suite is therefore necessary to apply these
techniques, and their effectiveness depends on the quality of the
test suite itself. However, scientific data analyses are explorative,
thus making it hard or even impossible to define tests that specify
correct behaviour in terms of expected outcomes [15, 16, 25, 30].

On the contrary, the database systems research community has
developed techniques for data provenance [6], locating the part
of input data that is involved in the computation of a result and
therefore the cause for it to appear. While this seems to be more
adequate to support the investigation of scientific data analysis
workflows in the first place, such techniques either require the
system to be augmented with additional information gathering
capabilities to trace data provenance during execution [14], or they
assume knowledge about internals of the workflow semantics [36].
Analogously, the term explainable AI has emerged [4], where a
research branch pursues explainability by calling for models that
are inherently interpretable for humans, such as linear models or
decision trees. These techniques require different levels of access
to the prediction model, and it remains to be investigated whether
they can be adapted for general data processing.

Consequently, we advocate that the investigation of suspicious
results of scientific data analysis workflows must accommodate the
specific needs of the scientists developing these workflows. Just
like the scientific discovery process itself, investigation should be
done in an explorative manner. Our motivating example represents
a characteristic case where exploratory analysis is required to de-
duce if the data indeed support shark attacks occurring early in
the morning. Intuitively, one would seek to spot the cause of the
suspicious outcome while incrementally reducing the data and in-
voking the workflow. Note that the shark dataset is a CSV file that
contains about 25k rows and 24 columns – a rather small dataset
compared to what is typically processed in data-centric systems,
but still overwhelming for humans to look at. In order to assist the
user, a smaller dataset would be useful where only the necessary
tuples are contained to reproduce the outcome of interest. To sys-
tematically support this reduction by assisting techniques, these
techniques should not assume any details about the computational
infrastructure, but consider the data analysis workflow as a black
box in order to be applicable.

To this end, we propose a semi-automated process centered
around data reduction to assist debugging an outcome. More specif-
ically, we coin the notion of an outcome-preserving input reduction
which is supposed to reproduce some outcome of interest of a data

analysis workflow to help the user reason about the circumstances
surrounding this outcome. In lieu of fault localization, we refer to
this process as irregularity localization, since the outcome investi-
gated may or may not be faulty, given the explorative process. Our
motivation can be summarized in the following research question:

“How can we support semi-automated irregularity localiza-
tion through outcome-preserving input data reduction in data
analysis workflows?”

2 STATE OF THE ART
Traditional research on scientific workflows has focused on optimiz-
ing for speed, led by the high-performance computing community.
However, with data analysis workflows becoming ubiquitous, there
is a changing mindset that human productivity arguably still is the
most expensive resource [8]. With our goal of assisting developers
in systematically investigating suspicious results, our proposed
technique is founded on the idea that input data may be reduced in
order to localize an irregularity in either the data or its processing.
Accordingly, we classify related work into three major research
areas, namely (i) program debugging and software fault localization,
(ii) data provenance, and the novel field of (iii) explainable AI.

Program debugging and software fault localization. The
idea of systematically narrowing down the search space for locating
a bug has been extensively researched; from a high-level point of
view, our idea is comparable to program slicing [35, 37], a technique
to extract only those parts of a program that are relevant for a par-
ticular computation. However, the very idea of slicing relies on the
assumption that the source code or some other kind of (formal) pro-
gram specification [24, 27, 29] is accessible, while we consider the
workflow as a black box. Spectrum-based fault localization [1] uses
a test suite to assign each program element a suspiciousness score
of how likely it is responsible for failing test cases by measuring
their involvement in failing and passing tests – heavily depend-
ing on a sophisticated test suite [11], unlikely to be available for
workflows. Likewise, delta debugging [38] automatically reduces
an input file such that each element is necessary to produce an
error which is typically spotted through a test suite or crash in a
program. Hierarchical Delta Debugging [23] applies this on tree
structured data (e.g., XML) – Wang et. al. [33] improved the base
algorithm by considering past iterations to build a model on the
likelihood of elements being necessary to reproduce a failure.

Data provenance. So-called Why-Provenance [6] is popular in
the database community to answer why a specific tuple appears
in the result. The Why-Provenance of a result tuple is the set of
input tuples that are involved in its computation. Ikeda et al. [13]
demonstrate how to utilize provenance to debug workflows by
enabling forward tracing of input tuples and backward tracing of
result tuples. Titian [14] enables the collection of data provenance
for dataflow systems by tagging each record with an id and tracking
them through the various data operators. However, data analysis
workflows, such as the Jupyter notebook of our motivating example,
are often heterogeneous collections of different analyses written
in different languages, and we cannot exploit the full capabilities
of an underlying data flow system such as Apache Spark, Apache
Flink, Apache Airflow, or Nextflow2. Moreover, Gulzar et. al. [10]

2[spark, flink, airflow].apache.org, nextflow.io



Outcome-Preserving Input Reduction for Scientific Data Analysis Workflows ASE ’22, October 10–14, 2022, Rochester, MI, USA

also remark that data provenance often returns excessively much
data, and in the worst case the whole input. To tackle this, BigSift
combines data provenance with delta debugging to find a minimal
set of records that lead to a test failure, which again relies on a test
suite that cannot be generally assumed to be available.

Explainable AI. Understanding the underlying operation prin-
ciples in machine learning concerns the field of explainable AI [4].
There are two major angles that deal with helping humans under-
stand the outputs of such systems. One is to use models that are
inherently interpretable, such as linear models and decision trees.
The other targets post-hoc techniques to interpret more complex
models. A central concept is that of measuring feature importance
for a prediction. Permutation feature importance [2] and sensitivity
analysis [5] determine the impact of each feature on a model’s accu-
racy by shuffling their values to measure the deviation in accuracy.
Lundberg et al. [21] proposed to apply the game-theoric concept
of shapley values by modeling features as players in a machine
learning prediction game and measuring the average contribution
to the game’s outcome. This requires testing any possible coalition
of players, i.e., all subsets of the feature space. Koh [19] used influ-
ence functions to approximate the contribution of each training
sample on the model accuracy. However, for non-ML tasks where
there is not necessarily a differentiable target function with access
to gradients, these techniques can not be readily applied.

3 RESEARCH VISION
Figure 2 illustrates a birds-eye view of the proposed approach. As
in a typical exploratory process, a scientist initiates a workflow by
submitting some input data to the data analysis workflow (marked
as (1) in Fig. 2), which is then processed, yielding an output. A
suspicious part of the output may be identified by the user; this is
specified in a debugging question (marked as (2)). The debugging
question is used by an Oracle to check whether the property of
interest specified by the question holds on the output data (marked
as (3)), which is typically the case when the workflow operates on
the original input dataset (unless the user specifies an inappropri-
ate debugging question). Then, a Reducer facility is supposed to
operate upon the input data in order to yield a subset of it. The
analysis workflow may be triggered again (marked as (4)) with the
reduced input, producing a new output. The oracle is employed to
deduce if the outcome of interest (illustrated as a puzzle piece in
Fig. 2) is still preserved. This process is triggered iteratively, apply-
ing the reduction criterion by the reducer in another iteration and
evaluated by the oracle, until some fixpoint is reached. The result
(at each iteration) is a reduced input, that can aid in answering the
debugging question. This way, the user may keep asking questions
about various properties in order to obtain an understanding of the
circumstances involving the irregularity sought to be investigated.
The approach is semi-automatic: although specification of the de-
bugging question is manual, the rest of the steps are automated.
Observe that the workflow is a black box; the proposed approach is
agnostic of the workflow internals. In the following, we elaborate
on the key elements shown in Fig. 2.

Debugging Question. The debugging question reflects the ob-
jective that the user seeks to investigate – it captures something
suspicious, and refining the user’s understanding is the goal of the
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Figure 2: Overview of the approach: General framework, its
main components, and developer in the loop.

exploratory process. The debugging question is thus assumed to be
specified by the user who, however, may be assisted by recommen-
dations or by using a domain specific language.

Reducer. The reducer facility may employ several strategies
to reduce the input data. This may occur iteratively, applying and
configuring strategies and checking (through the Oracle) if the
outcome of processing the original input (specified as a debugging
question) is preserved over subsequent applications of the work-
flow. In practice, strategies can employ a variety of techniques,
including search enabled by heuristics, machine learning and data
mining. In principle, they can be both generic and defined per use
case. Explanation techniques for machine learning models may
be also incorporated due to presence of AI workloads, or if their
assumptions can be relaxed and thus can be applied for general data
processing tasks. Note that strategies can also utilize information
from previous reduction iterations.

Oracle. The Oracle is responsible for checking if the irregularity
specified as the debugging question is still preserved in the reduc-
tion produced by the application of some strategy. This amounts to
evaluating the debugging question as a query.

4 PROTOTYPICAL INSTANTIATION
To investigate the feasibility of the reduction approach advocated
for irregularity localization, we realized a proof-of-concept proto-
typical implementation. We opted for Python as the target language,
due to its general popularity, in particular within scientific and data
science communities3. The shape of the (input and output) data we
consider is tabular, in line with our motivating example and as it is
customary for many kinds of (statistical) scientific software [31]. De-
bugging question specification is enabled by Pandas Dataframes4,
implementing both data handling and the oracle.

Our goal is to explore feasibility and assess the design of the
system realizing the overall architecture of Fig. 2. Thereupon, we
realized two strategies, instantiating the Reducer element of Fig. 2
– one based on delta debugging, representing a base case, and a
more involved one utilizing behavioral similarity, illustrating the
potential that more advanced techniques can have. We choose those

3https://spectrum.ieee.org/top-programming-languages-2022
4pandas.pydata.org
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strategies as representative cases where one reflects a straightfor-
ward but generically applicable approach, and the other one exploits
characteristics of the underlying data.

Reduction Strategy 1. The ddmin algorithm [38] implementing
delta debugging is a generic approach which works for arbitrary
sets of items. For the tabular shape of data as in our example, there
are two dimensions where a reduction can be applied; the table
rows and columns. However, note that ddmin can only be applied
to get rid of irrelevant rows. Columns can not be simply reduced by
removing them, as removing columns from a table is a change in its
format; which is highly likely to disrupt the data analysis workflow.
The strategy we implement therefore randomly mutates values in
a column, in effect exploiting randomization to assess if they have
an effect on the outcome.

Reduction Strategy 2. Under the assumption that similar data
induces similar behaviour, we propose a more advanced strategy
combining fault isolation and similarity search. Adopting the fault
isolation algorithm from [17], we compute two reduced datasets
from the original input that differ in only one element – one dataset
reproduces the specified outcome and the other does not. During
this process, there should be data that got removed in the process
without affecting the outcome. These serve as the basis for similarity
search, which exploits the structural nature of the data at hand.
If we find data tuples similar to the ones that have been removed
without affecting the outcome, it is likely that we can remove them
as well. In case that no tuples are removed, this is a strong indicator
that the data in the current iteration has reached a minimal point.
We define similarity of two records as the average similarity over
each column value. For each value, we use classical distance metrics
depending on their data type. For our prototypical instantiation,
these are the normalized Euclidean distance for numerical values,
the Levenshtein distance for strings, and equality for categorical
data. Data types of each column are derived automatically through
profiling.

Preliminary Results. Back to our shark attack example of Sec.
1, recall that the user is investigating the unusual spike in attacks
early in the morning (Fig. 1). The user specifies the debugging
question as a Pandas query of “(Time=="07h00" & Count == 177)”
to capture the outcome of interest. Figure 3 depicts a profile of the
reduced input dataset delivered by our tool. The minimized dataset
comprises 177 tuples and one column that are needed to reproduce
the behaviour specified by the debugging question. Observe that
only column ‘Time’ has been deemed relevant, and the relevant
tuples take the values of ‘Morning’, ‘Evening’ and ‘07h00’. This
represents a strong hint to the user; some data transformation
applied within the workflow did yield these irregular values.

As is typical in the domain, data cleaning can have unintended ef-
fects; in this case, some cleaningwas irregularly applied to group the
strings ‘Morning’ and ‘Evening’ with ‘07h00’. The user can then ex-
amine the relevant part of the workflow (black box of Fig. 2). For the
example presented, there exists a function convert_time_text()
that converts time given as text into clock time that contained the
bug. It is a up to the user to assess whether mapping ‘Morning’ and
‘Evening’ to ‘07h00’ is intended functionality or not.

In our preliminary evaluation of the shark example, applying
the ddmin strategy took 3947 iterations to reduce 25723 rows to
177 rows, with a running time of approximately 10 minutes on a

Figure 3: Data profile of the reduced input dataset, serving as
a starting point to localize the irregularity observed in our
motivating example.

Macbookwith a 2 GHz Quad-Core Intel Core i5 CPU and 16 GB 3733
MHz LPDDR4X Ram. In comparison, the isolation and similarity
strategy took 59 iterations and about 15 seconds for the rows. Both
ran 7 iterations to reduce 24 columns to 1 column. While we do
by no means argue for the generalizability of our results, for this
particular example, the data-aware approach was superior to the
naive one, since the analysis workflow was aggregating data tuples
with the same values in the relevant columns. As such, compared
to randomly guessing a data reduction, the use of similarity could
easily guide the reducer to remove irrelevant data. We believe this
illustrates the high potential of utilizing information about the data
to guide reduction.

5 CHALLENGES AND RESEARCH AGENDA
Exploratory data analysis within scientific computing very often
yields results for which it is hard to judge whether they are correct
or not. To support irregularity localization in such workflows, we
advocate the employment of reduction techniques to produce mini-
mal data sets that preserve a specified outcome, to aid debugging.
To realize an end-to-end framework, we identify several open soft-
ware engineering challenges involved in answering the research
question set previously, spanning various levels of abstraction.

Data shapes and efficient strategies. Scientific workflows
revolve around data; as such, the shape of the data as well as pro-
cessing and size characteristics naturally affect the choice and devel-
opment of reduction strategies. Firstly, assuming a specific structure
in input datasets (e.g., tabular, hierarchical, graph-like) can give rise
to specialized strategies and heuristics for reduction. As such, con-
struction and development of a portfolio of strategies able to handle
different data shapes efficiently is a priority. Secondly, data-heavy
workflows often process huge amounts of data and can therefore
have rather long running times (and thus cost), which affects the
number of feasible iterations that can be performed for reduction. It
is thus essential to evaluate strategies against (i) efficiency, defined
as the inverse of the cost of iterations needed, and (ii) effectiveness,
in terms of the size of the reduction they achieve. Finally, trade-offs
between such efficiency and effectiveness for these strategies should
be gauged, so that a designer can do appropriate dimensioning.

Effective specification of debugging questions. An impor-
tant step is the specification of debugging questions; developers
should be supported effectively in their formulation. Although, in
general, a user may utilize the full expressiveness of their program-
ming language of choice, specialized methods can aid in specifica-
tion. A natural direction is interactive question formulation, such
as within computational notebooks [18]. Due to the exploratory na-
ture of the process at hand, there is minimal knowledge about what
results should be; as such, recommendation facilities aiding specifi-
cation of potentially questionable outcomes appear promising. A
starting point can be to recommend debugging questions targeting
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outliers. DSLs and similar techniques can be further integrated,
incorporating features such as outlier detection, and in tandem
with visualization techniques for incremental specification [3].

End-user validation. An empirical investigation should be per-
formed to assess whether the approach helps users in debugging and
understanding their workflows end-to-end. In particular, we treat as
foundational an investigation of effectiveness over selected work-
flows that pose challenges for analysis, including remote sensing,
biomedical image analysis and space downstream data processing.
User studies within such endeavors should determine how useful
reductions are in helping users spot irregularities in their data.
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